

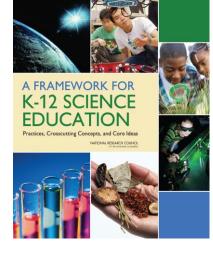
Creating and Experimenting with Models

Joe Krajcik CREATE for STEM Michigan State University

STEM Smart February 1, 2016

STEM Smart workshops are funded by the National Science Foundation grant #1449550. Any opinions, findings, and conclusions or recommendations at this event or in these materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

What will we do today?


CREATE for STEM

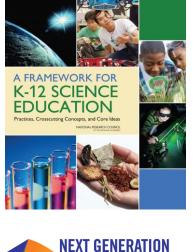
Institute

- Learn a bit about the project
- Engage in developing a model

Learning Goals for Today: You will be able to:

- 1) Explain how to support students in constructing models
- Develop a model to explain an important scientific phenomenon.

Building Models Projects


Goals of the project

- 1. Develop a dynamic modeling tool (SageModeler)
- 2. Develop curriculum materials that align with the tool and goal from the NGSS
- 3. Study the affects of the tool on students developing understanding of various performance expectations

Collaboration between CREATE for STEM at MSU and the Concord Consortium (Dan Damelin)

MICHIGAN STATE

What is really different about the Framework and NGSS?

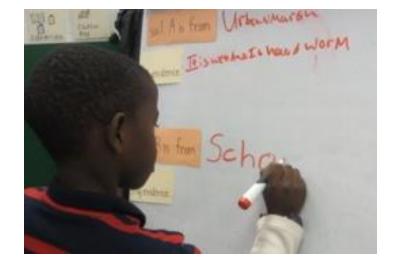
CREATE for STEM

Institute for Collabo

- 1. Focus on explaining phenomena or designing solutions to problems
- 2. 3-Dimensional Learning
 - 1. Organized around disciplinary core explanatory ideas
 - 2. Central role of scientific and engineering practices
 - 3. Use of crosscutting concepts
- 3. Instruction builds towards performance expectations
- 4. Coherence: building and applying ideas across time

Science and Engineering Practices

The multiple ways of knowing and doing that scientists and engineers use to study the natural world and design world.


- 1. Asking questions and defining problems
- 2. Developing and using models
- 3. Planning and carrying out investigations and designing solutions
- 4. Analyzing and interpreting data

- 5. Using mathematics and computational thinking
- 6. Constructing explanations and designing solutions
- 7. Engaging in argument from evidence
 - 8. Obtaining, evaluating, and communicating

The practices work together – they are not separated!

What's the value of scientific practices?

•Practices shift the focus from science classrooms as an environment where students *learn about* science ideas to places where students *explore, examine and use* science ideas to explain how and why

 Science instruction should focus on figuring out how phenomena work!

What is a model??? What is modeling?

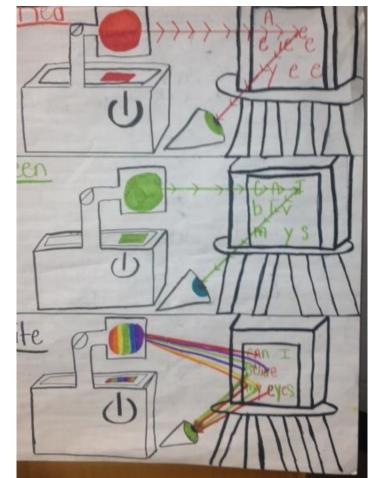
Take a few minutes a talk with the people at your table to respond to the following questions:

- What is a model?
- What does it mean to develop a model?

Our dream: engaging students in constructing models throughout the K – 12 curriculum

Students of all ages and backgrounds can take part in modeling!

Grades K - 2	Grades 3 - 5	Middle School	High School		
Develop a	Develop and	Develop	Develop, revise,		
simple model	revise models	models to	and use models to		
that	collaboratively	describe	predict and support		
represents a	to measure	unobservable	explanations of		
proposed	and explain	mechanisms.	relationships		
object or	frequent and		between systems or		
tool.	regular events.		between		
			components of a		
			system.		


Greater sophistication

Developing and using scientific models

- A scientific model...
 - ...represents the objects and the relationships among them to explain and predict phenomena
 - ...provides a *causal mechanism* that accounts for the phenomenon
 - ...could be depicted as a drawing, diagram, 3-D, or other representation
 - ...but only representations that explain and predict phenomena are scientific models

Models explain or predict how and why phenomena happen

Steps in developing a model

- Plan: What objects do you need in your model? What factors or variables are associated with each of the objects?
- Build: What relationships exists between each of the factors/variables?
- Test: Do the set of relationships you developed, provide a causal account (i.e., does it explain the phenomena? does it account for all the evidence?)?
- Revise: Does your model still provide a causal account for any new evidence or other phenomena? How should it be changed?

Let's build a model

Go to the Concord Home page, select projects and look for Building Models Project

http://concord.org/projects/building-models#about

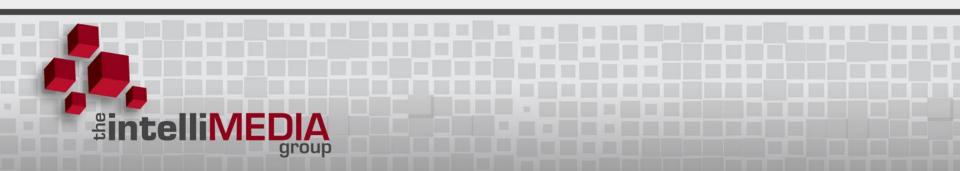
Status of Project

- You can use the current version but be aware that there are still bugs
- Curriculum materials
 - Middle school unit on carbon cycling final stages of development
 - High School units start development
- New features:
 - Quantitative mode
 - Data entry mode
- Field testing will begin at the end of February
 - Two middle grade classrooms
 - Two high school classrooms

Questions?

- What questions do you have regarding modeling?
- Other questions:

Email Addresses


Joe: krajcik@msu.edu twitter: @krajcikjoe

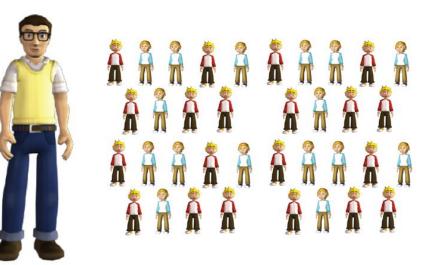
The LEONARDO Project: Virtual Science Notebooks and Science Modeling for Upper-Elementary Science Education

James C. Lester Robert G. Taylor

North Carolina State University

Center for Educational Informatics

Transforming education with nextgeneration learning technologies


 NAE Grand Challenge for Engineering: Advanced Personalized Learning

• Mission: Design, deploy, and investigate adaptive learning environments

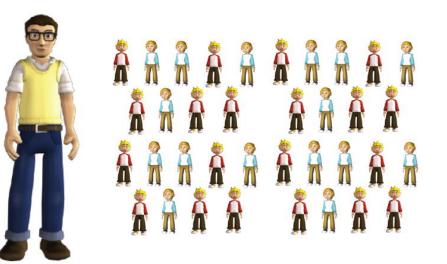
One-on-One Tutoring

Design Challenge

"Provide a teacher for every learner"

- Learn at their own pace and in their own style
- Receive continuous, customized and meaningful feedback and assessment
- Acquire new skills in a way that is compelling and engaging

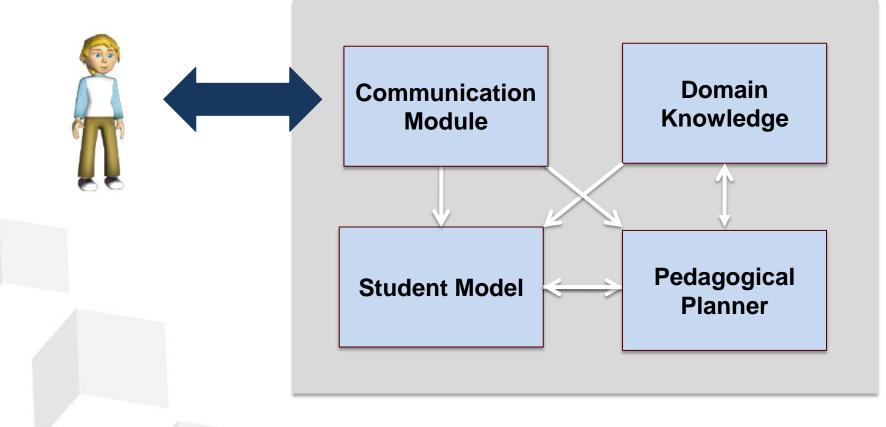
Design Challenge


"... provide learning environments that approach the effectiveness of one teacher for every learner. Such systems, properly used, can produce a significantly bettereducated populace by combining advances in learning sciences with advances in information technology."

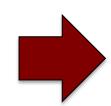
GRAND RESEARCH CHALLENGES IN INFORMATION SYSTEMS

COMPUTING RESEARCH ASSOCIATION

Personalized Learning Technologies

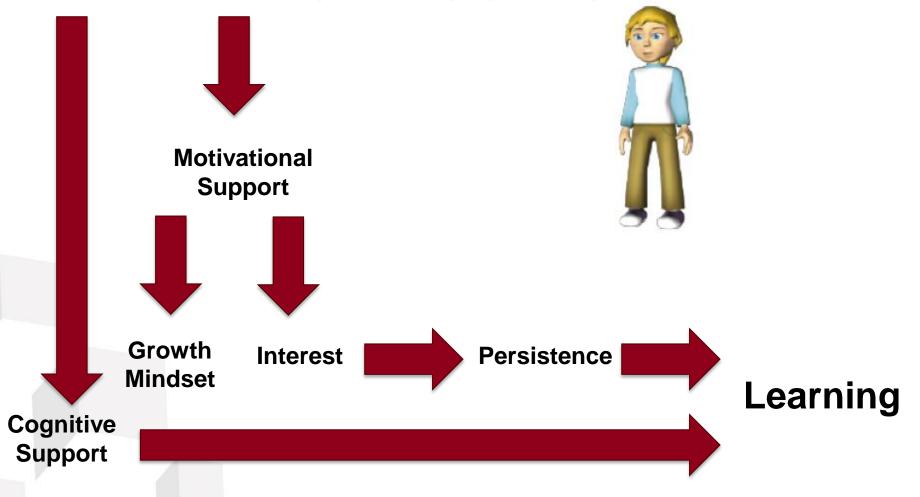


Intelligent Tutoring Systems

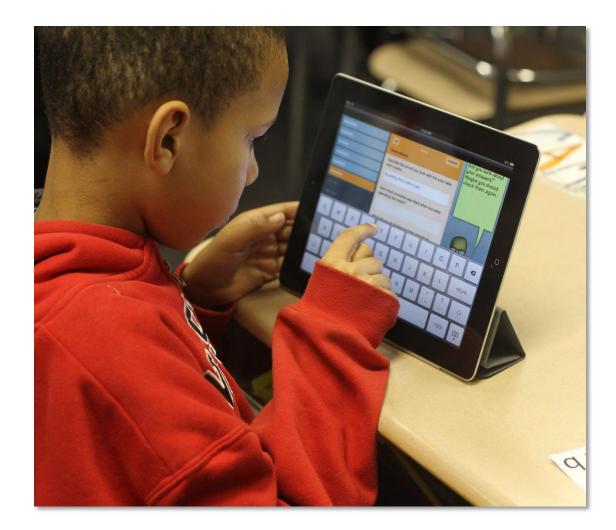


- Student modeling
- Pedagogical planning
- Adaptive feedback

What's Wrong with This Picture?

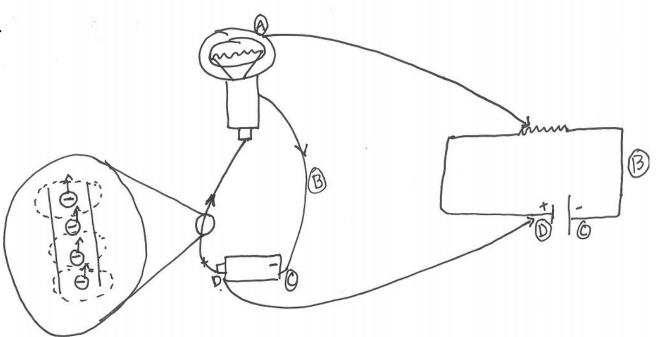

- Does not feature science modeling
- Inquiry not playing a central role
- Missing key benefits of science notebooks
- Engagement not key design objective

Rich inquiry + lab-based science + engagement Personalized Learning Hypothesis


SintelliMEDIA group

Interactive Modeling + Pedagogical Agents

The LEONARDO Project

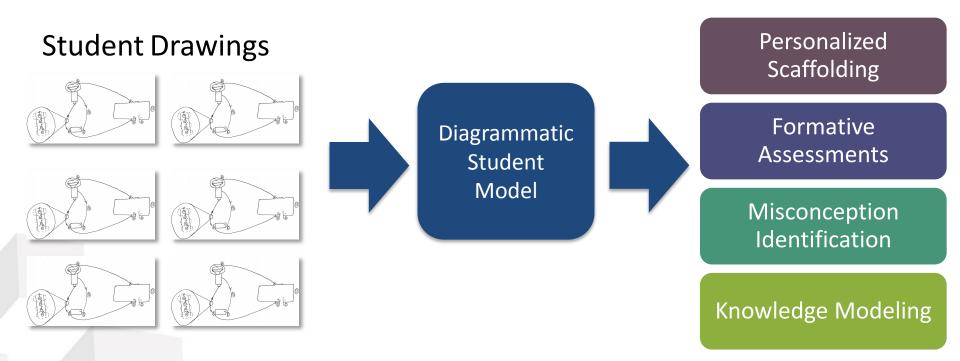


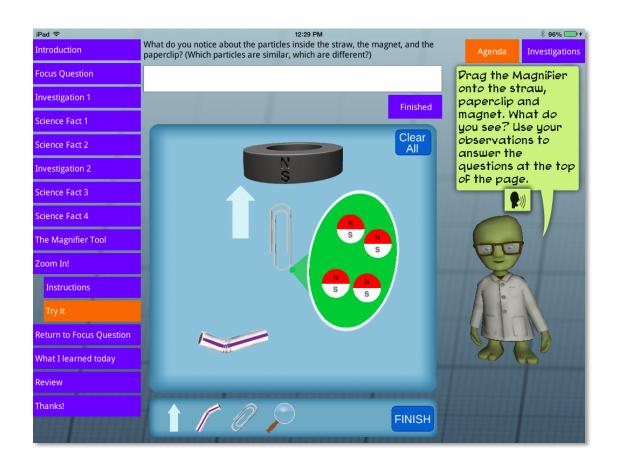
- Intelligent science notebook
- Guided inquirybased learning
- Upper elementary science education
- Diagrammatic interactive modeling
- Multi-platform delivery
 - Tablet
 - Web browser

Diagramming in Science Education

Drawing is central to thinking and learning about science [Ainsworth et al., 2010]:

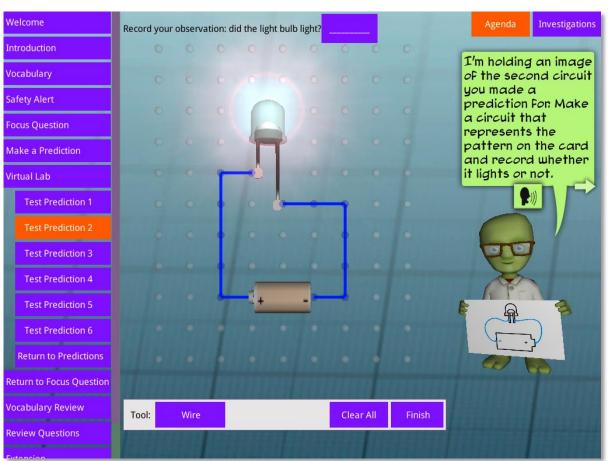
- Improve sensemaking
- Communicate knowledge
- Reveal understanding


Drawing in Science Education


Mining Learner-Generated Science Drawings

- Interactive modeling
- Pedagogical agent
- Curriculum:
 - Energy & Circuits
 - Magnetism
- NGSS aligned
- FOSS compatible

LEONARDO CyberPad



iPad 중	6:07 PM	∦ 100% 💷 ≁
Welcome	What do you think the word energy means?	Agenda Investigations
Introduction	The word energy means the ability to do work make things move or happen it comes in different forms such as hest light motion chemical and electrical	Think back to your
Write what you know	Finished	experiences and give me more
A Flashlight	What can energy be used for?	information in your scientific
Flashlight Parts	Energy can be used for tv phones computuers and tabalats phone wires the building that runs off of	explanation.
Circuits	Finished	
Vocabulary	Where does energy come from? Energy comes from a d-cell souces	
Safety Alert		
Focus Question	Finished	00
Make a Prediction		
Virtual Lab		
Return to Focus Question		
Vocabulary Review		C
Review Questions		
Thanks!		

Modeling via Drawing

BintelliMEDIA group

- Students draw with semantically grounded objects
- Mitigates
 cognitive load
 issues
- Preserves
 generative nature
 of drawing

Automating Drawing Assessment

- Student-generated drawing
 - Collection of graphical elements
 - 2D coordinates for each element
 - Orientation for each element
- Automatically analyze drawings
 - Scored with respect to normative models
 - Considers extraneous elements, missing elements, spatial relationships, and domain specific relationships

Computational Challenges

Large solution space

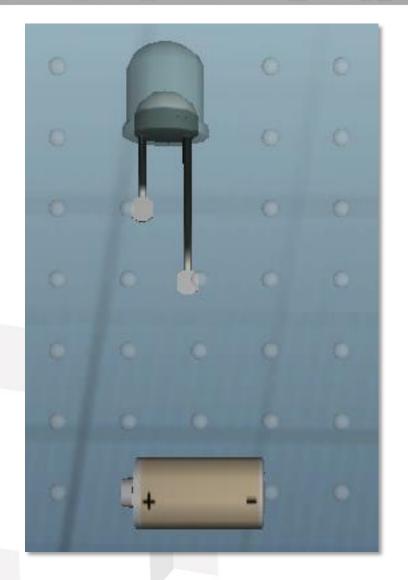
- Multiple families of correct drawings
- Majority of space comprised of incorrect drawings
- Broad range of drawing quality
 - Conceptual variance
 - "Execution" variance

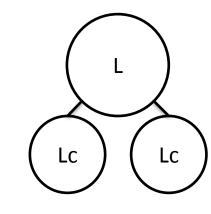
Computational Challenges

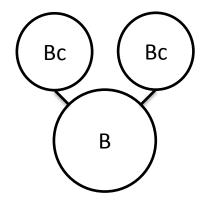
Large solution space

- Multiple families of correct drawings
- Majority of space comprised of incorrect drawings
- Broad range of drawing quality
 - Conceptual variance
 - "Execution" variance

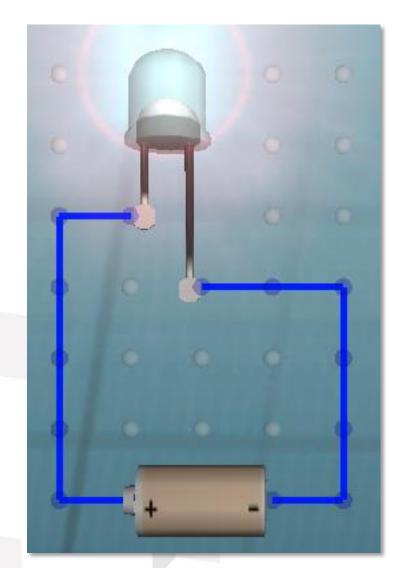
Topological Representation

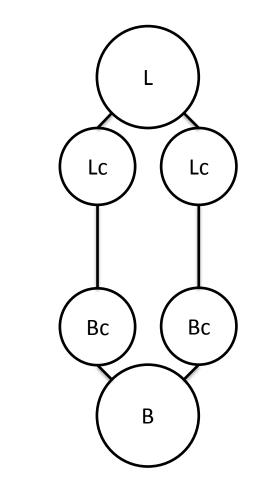

Labeled Graph Encoding


- Nodes represent key graphical elements
- Edges represent topographical relations
- Capable of representing broad array of relations between objects



Topology: Elements





Topology: Connectivity

Middle School Microbiology & Literacy - Free!

mystery.

Read more »

Read more »

Read more x

http://projects.intellimedia.ncsu.edu/crystalisland/

cei-contact@ncsu.edu

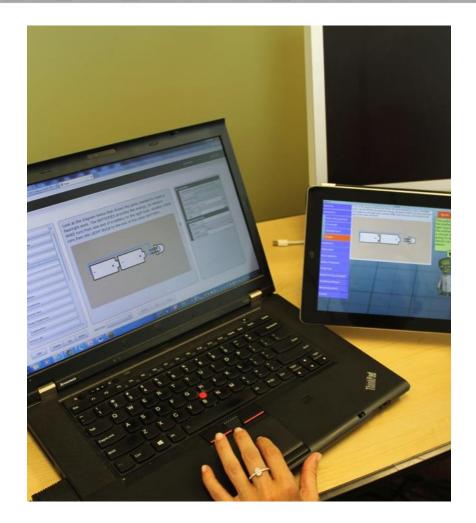
Download Information - Free!

Download on the App Store

https://projects.intellimedia.ncsu.edu/leonardo/

cei-contact@ncsu.edu

LEONARDO CyberPad Laptop Demonstration



Challenges of Adaptive Learning Environment Authoring

- Authors who are not computer scientists
- Enabling collaboration
- Reducing the learning technology complexity exposed to authors

Scalable Authoring Tools

- Design principles derived from our experience
- Adopting existing UI and workflows
- Leveraging software engineering techniques

LEONARDO Authoring

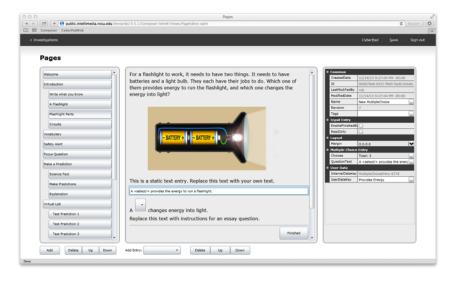
SintelliMEDIA group

- To date has enable SMEs to author:
 - Energy & Circuits
 - Magnetism
- Pedagogical agent
 - Behaviors
 - Advice (TTS built in to LEONARDO)

LEONARDO

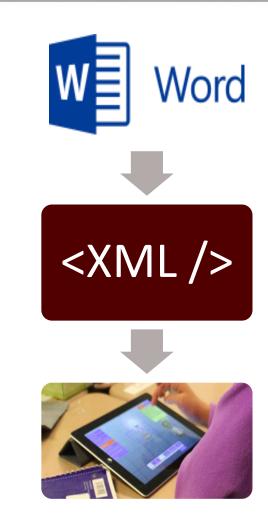
Pages			Cyber <u>P</u> ad <u>S</u> ave	
Welcome	For a flashlight to work, it needs to have two things. It needs to have	Common		
	batteries and a light bulb. They each have their jobs to do. Which one of	CreatedDate Id	11/14/13 9:27:04 PM -05: 806878a8-6531-fb60-5ad0	
Introduction	them provides energy to run the flashlight, and which one changes the	LastModifiedBy	rob)-DC66
Write what you know	energy into light?	ModifiedDate	11/14/13 9:27:04 PM -05:	00
		Name	New MultipleChoice	(
A Flashlight		Revision	7	
Flashlight Parts		Tags		(
		Input Entry		
Circuits		EnableFinishedE	зі 🔲	
Vocabulary		ReadOnly		
	- BATTERY + - BATTERY +	Layout		
Safety Alert		Margin	0.0.0.0	
Focus Question		Multiple Choice		
		Choices	Total: 3	
Make a Prediction		QuestionText	A <select></select> provides the e	nerç
Science Fact			MultipleChoiceEntry-677d	
	This is a static taut entry. Deplace this taut with your own taut	UserDataKey	Provides Energy	-
Make Predictions	This is a static text entry. Replace this text with your own text.			
Explanation	A <select></select> provides the energy to run a flashlight.			
Virtual Lab				
Test Prediction 1	A changes energy into light. Replace this text with instructions for an essay question.			
Test Prediction 2				
Test Prediction 3	Finished			

omposer


LEONARDO Composer

Authors use Composer to create:

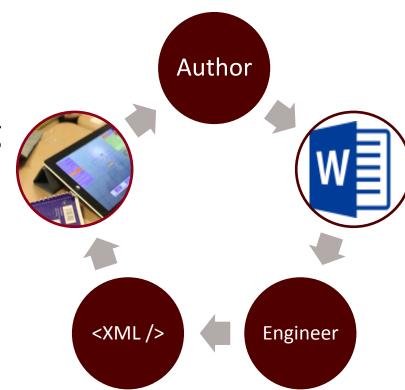
- Curricular content
- Agent dialogue
- Agent behavior



Prior to Composer

Original authoring workflow:

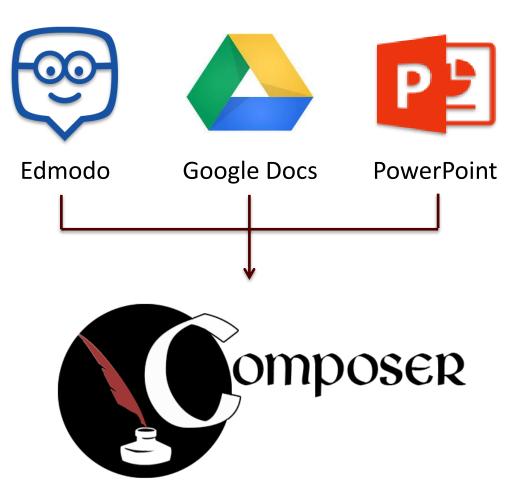
- Word used to author curriculum and agent dialogue
- Doc copied into XML
- XML embedded in the iPad app
- Agent behavior authored in code by software engineers



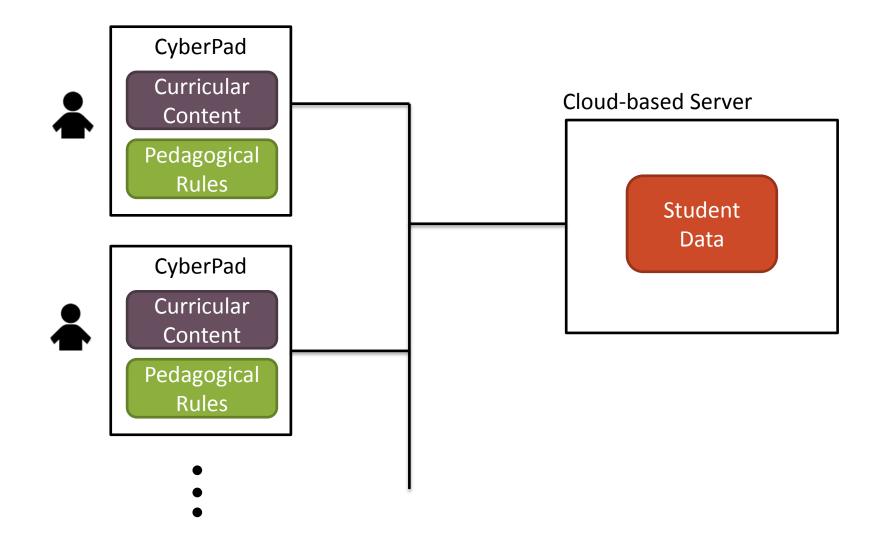
Prior to Composer

SintelliMEDIA group

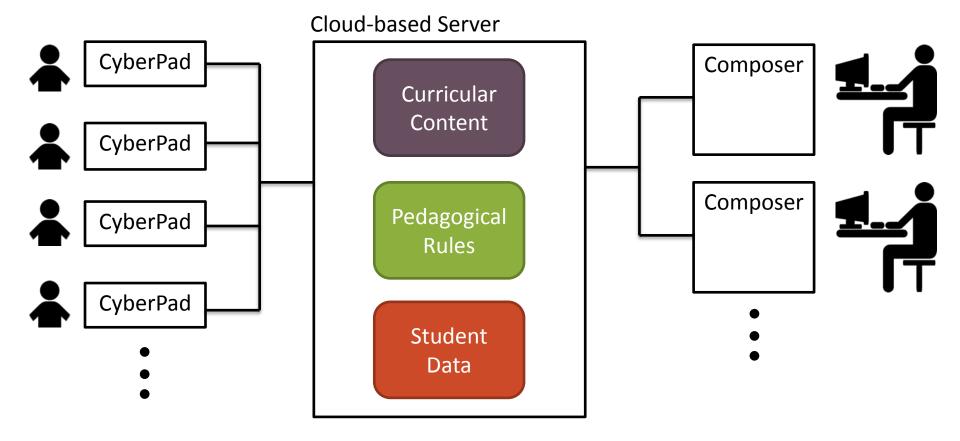
Drawbacks:


- 15+ minute iteration
- Lack of WYSIWYG
- "Collaboration" by e-mailing Word docs
- Prone to programmer error
- Rules authored in source code

Lesson Learned: Create an Authoring Tool


SintelliMEDIA group

- Identify authors:
 - STEM SMEs
 - K-12 teachers (future)
- Identify familiar tools
- Design Composer based on familiar UIs & features
- Iteratively develop
 Composer based on
 author feedback

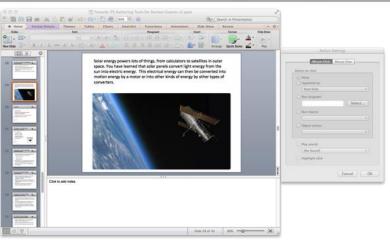


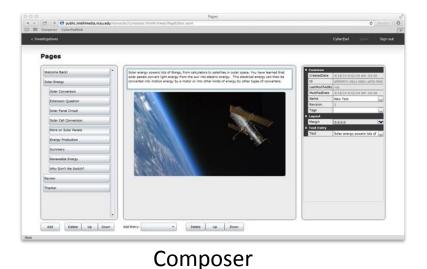
LEONARDO Architecture Prior to Composer

LEONARDO Architecture with Composer



Composer Features

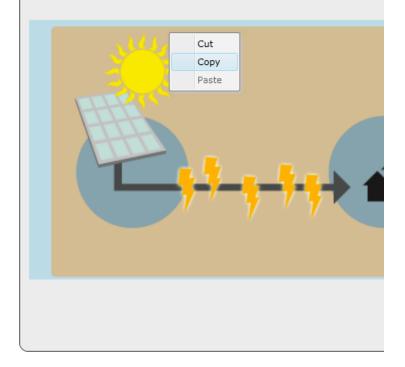

- Simplified workflow
- Familiar UI
- Rapid iteration
- Curricular content stored in cloud
- Web-based authoring tool


Principle 1: Familiar User Interface Paradigm

SintelliMEDIA group

- UI is the most important feature
- Familiar to author
- Leverage decades of usability and efficiency improvements

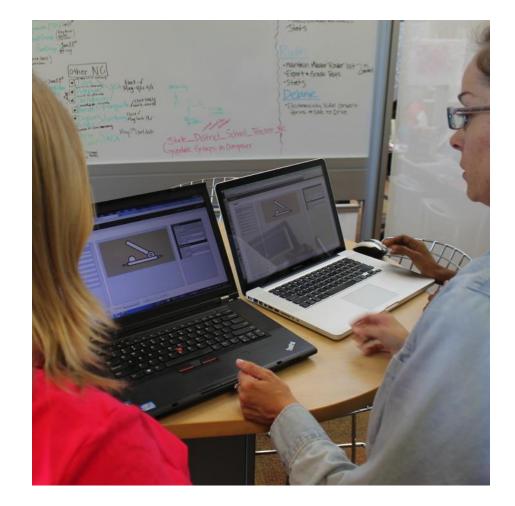
PowerPoint

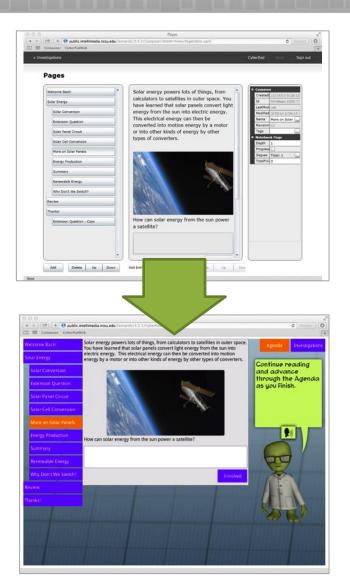


Principle 2: Standard Editing Features

- Relied upon by authors
 - Copy, Cut, and Paste
 - Undo and Redo
 - Revision Tracking
- Can profoundly affect curricular content storage
- Should not be left as a feature to be added at the end of project

How much energy can solar cells produce?


Large solar panels can produce enough energy to sup house or even a factory. When hundreds of solar pan together, they can supply enough electricity for a whe

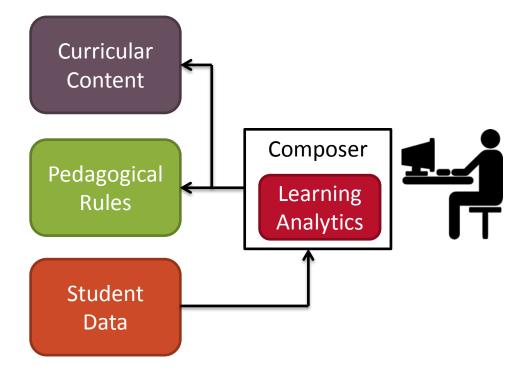


- Multiple author collaboration
- Facilitates communities of authors
- Increase both quality and quantity of content

Principle 4: Rapid Iteration

- WYSIWYG or live connection to the ITS
- Changes can be quickly seen in the context of the ITS
- Test ITS behavior while editing rules

Principle 5: Accommodate Novice and Expert Authors



- UI tailored to novice and expert users
- Wizard interfaces for novice users
- Advanced authoring UI for expert users

Properties:					
Ξ	EssayRule				
	Condition	DoesNotIncludeAnyOfTheseWords convert electricity			
	ConditionParameter				
	DialogMoves	Total: 0			
Properties:					
	Dialog				
	DialogMoveType	Hint			
	Level	2			
	PadMate Action				
	Gesture	Thinking			
	Image				
	Repeatable	\checkmark			
	Verbal	A solar panel converts energy.			

Principle 6: Automation

- Some tasks too labor intensive
- Provide automation for repetitive tasks
- Learning analytics to highlight curricular "hot spots"

Conclusion

- Intelligent virtual notebooks hold significant potential for next-gen science education.
- LEONARDO CyberPad supports sketch-based interactive modeling supported by a virtual agent.
- Authoring tools hold great promise for facilitating rapid creation of scalable solutions to adaptive cyberlearning environments.

- Expanding to full suite of sketch recognition and sketch understanding functionalities.
- Apply learning analytics to identify interactions that will particularly benefit from adaptive scaffolding.
- Leveraging advanced student modeling capabilities featuring PAIR (plan, activity, and intent recognition) for optimizing personalization of inquiry activities and guidance.