Separating Facts From Fads: How Our Choices Impact Students' Performance and Persistence in

Science, Technology, Engineering, and Mathematics

Philip M. Sadler, Ed.D.
Director, Science Education Department
F.W. Wright Senior Lecturer in Astronomy

Harvard-Smithsonian Center for Astrophysics
Cambridge, MA

Abstract

The U.S. is unique in the variety of teaching methods and curricula used in science and math classrooms. We have mined 20,000 college students' histories taking critical college "gate-keeper" courses in biology, chemistry, physics, and calculus, putting to the test K-12 educators' beliefs about the kinds of preparatory experiences and key resources that impact both college grades and students' career choice. I will share findings on the impact of lab experience, graphing calculators, computerized labs and simulations, demonstrations, content coverage, Advanced Placement courses, project work, teacher professional development, and mathematics preparation.

Harvard-Smithsonian Center for Astrophysics

- Largest astronomical research institution in the world
- A partnership between:
- Harvard's Department of Astronomy
- Harvard College Observatory
- Smithsonian Astrophysical Observatory
- More than 250 scientists in a staff of over 900
- Telescopes on earth and in space
- Precollege Science Education K-12 since 1985

CfA's Science Education Department

- Formed in early 1990's
- Grown to 30 staff
- \$4M/year grants \& contracts
- NSF
- NASA
- Annenberg
- NIH
- 1/3 Astronomy
- 1/3 Physical Sciences
- 1/3 Life Sciences and Mathematics

Goal
National impact on science education in formal and informal settings

Cutting-edge Technologies MicroObservatory Telescopes

- 5 online telescopes taken more than 1 million images
- In-school, afterschool, clubs, camps, and museums

Research on Educational Assessment and Effectiveness

- Identify beliefs of STEM stakeholders
- Generate hard evidence that supports or refutes hypotheses
- Disseminate findings to the educational community and the public

Empowerment in Science Curriculum Development: A microdevelopmental approach

Marc S. Schwartz ${ }^{\text {a* }}$ and Philip M. Sadler ${ }^{\text {b }}$
${ }^{1}$ McGill Univenity, Canada; ${ }^{\text {b }}$ Harvard-Smithsonian Center for Astrophysics, USA

With limited time and money, where do you put your resources?

- Advanced

Placement

- Block scheduling
- Labs and demonstrations
- Assessment
- Instructional practices
- Technology
- Facts vs Concepts
- Coverage
- Physics First
- Mathematics
- Inquiry
- Teacher Knowledge

Epidemiological Methods

- Retrospective Cohort Studies
- Quicker than longitudinal methods
- Relies on accurate recall
- Tests many hypotheses at the same time
- When done well, halfway between
- Correlational and Experimental studies
- Includes alternative hypotheses \& controls
- Lack of correlation implies lack of causality

Stratified Random Sample

Context

How and when does STEM career interest develop?
What influences progress toward a STEM career?

When do college graduates say they first became interested in "science"?

When do college graduates say they first became interested in "science"?

When do college graduates say they first became interested their career discipline?

When do college graduates say they first became interested their career discipline?

How Does Interest in a STEM Career Change in High School?

- Does it change?
- Is it it different by field?
- Are there differences by gender?
-What is the role of HS physics?

How Does Interest in a STEM Career Change in High School

- Hazari, Z., Plotkin, G, Sadler, P.M., and Sonnert, G. (2010) Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study, Journal of Research in Science Teaching, 47(8), 978-1003.
- Sonnert, G., Sadler, P.M. \& Michaels, M. (in press) Gender aspects of participation, support, and success in a state science fair, School Science and Mathematics.
- Dabney, K. P, Almarode, J.T., Miller-Friedmann, J.L., Tai, R.H., Sonnert, G. \& Sadler, P.M. (in press) Out-of-School Time Science Activities and Their Association with Career Interest in STEM, International Journal of Science Education
- Sadler, P.M., Sonnert, G., Hazari, Z., \& Tai, R.H. (2012) Stability and Volatility of STEM Career Interest in High School: A Gender Study, Science Education.

Do HS courses impact STEM persistence?

What the public hears

"It is better to take a tougher course and get a low grade than to take an easy course and get a high grade."
Clifford Adelman, Senior Research Analyst, U.S. Dept. of Ed.

STEM Courses in High School \# of years vs rigor

HS Coursework and Δ Probability of Wanting to Pursue a STEM Career at the End of High School, controlling for Initial Interest, SAT, SES, Gender

Biology

HS Coursework and Δ Probability of Wanting to Pursue a STEM Career at the End of High School, controlling for Initial Interest, SAT, SES, Gender

Biology

Chemistry

HS Coursework and Δ Probability of Wanting to Pursue a STEM Career at the End of High School, controlling for Initial Interest, SAT, SES, Gender

Biology

Chemistry

HS Coursework and Δ Probability of Wanting to Pursue a STEM Career at the End of High School, controlling for Initial Interest, SAT, SES, Gender

Biology

Physics

Chemistry

Calculus

Persistence

- STEM interest shifts in HS
- Engineering > science \& math
- HS volatility higher for females
- HS coursework impacts interest
- Bio: - for years; no impact for AP
- Chem: + for 2 years; none for AP
- Phys: + for years; no impact for AP
- Math: + for calc; no impact for AP

Gender Issues

Tai, R. H. \& Sadler, P. M. (2001) Gender Differences in Introductory Undergraduate Physics Performance: University Physics and College Physics in the United States. International Journal of Science Education, 1017-1037.
Hazari, Z. S., Tai, R. H., \& Sadler, P.M. (2007). Gender differences in introductory university physics performance: The influence of high school physics preparation and affect. Science Education. 1-30.
Hazari, Z., Sadler, P.M., \& Tai, R.H. (2008) Gender Differences in the High School and Affective Experiences of Introductory College Physics Students, The Physics Teacher, 46, 423-427.
Plotkin, G, Hazari, Z., \& Sadler, P.M., (in press) Unraveling Bias from Student Evaluations of their Science Teachers, Science Education

Career Variables for College Freshmen by Field and Gender $\mathrm{N}=5570$ students at 40 randomly chosen U.S. colleges
Units in standard deviation from the mean, bubble areas reflect \mathbf{N}

Interest in a STEM Career at the end of high school by

 career interest at the start of high school

Is there a connection between students' participation in OST activities and their STEM career intention?

Table 2. Logistic regression model summary with odds ratio

	B	Sig.	SE	Odds ratio
Intercept	-4.943	${ }^{* * *}$	0.281	0.007
Gender	1.514	${ }^{* * *}$	0.080	4.544
Parental education	0.004	0.819	0.019	1.004
Socioeconomic status	0.000	${ }^{* *}$	0.000	1.000
Race/Ethnicity				
\quad East Asian	-0.203	0.247	0.175	0.817
\quad Caucasian	-0.007	0.949	0.110	0.993
\quad African-American	-0.006	0.969	0.163	0.994
MS interest				
\quad Science	0.592	${ }^{* * *}$	0.090	1.808
\quad Math	0.664	${ }^{* * *}$	0.093	1.904
MS grade				
\quad Science	0.013	0.875	0.083	1.013
\quad Math	0.399	${ }^{* * *}$	0.079	1.490
OST clubs/Competitions	0.409	${ }^{* * *}$	0.086	1.506
OST reading/Watching	0.287	${ }^{* *}$	0.084	1.332
${ }^{*} p<0.05,{ }^{* *} p<0.01,{ }^{* * *} p<0.001$.				

Persistence

- STEM interest shifts in HS
- Engineering > science \& math
- HS volatility higher for females
- HS coursework impacts interest
- Bio: - for years; no impact for AP
- Chem: + for 2 years; none for AP
- Phys: + for years; no impact for AP
- Math: + for calc; no impact for AP
- People orientation
- Low for STEM, high for Med/Health
- Higher for females
- Extrinsic Reward orientation
- Higher for males
- Engineering > science and math

Science reading/watching and OST clubs and competitions
Discuss challenges and benefits of a STEM career

Performance in Introductory College Courses

- Studying Science Gatekeeper Courses
- STEM \& Medicine
- Grades based on professor's assessments
- Authentic measure
- What prepares students for success in college science courses?

Does the Order in Which Science Courses Are Taken Make a Difference?

Sadler, P.M. \& Tai, R. H. (2007) The Two High-School Pillars Supporting College Science. Science

Testing the Physics First Hypotheses

1. Taking more physics will have a positive impact on later learning in chemistry
2. Taking more chemistry will have a positive impact on later learning in biology

Transstrovs
Supporting College Science

EDUCATIONEORUM|

HS Biology

College Biology
College
College Physics
Chemistry

HS Chemistry Effect

HS Physics Effect

Mathematics Effect

Is Advanced Placement the Answer?

Sadler, P.M. \& Tai, R. H. (2007). Advanced Placement exam scores as a predictor of performance in introductory college biology, chemistry, and physics courses. Science Educator, 16(1).

Sadler, P.M., Sonnert, G. Tai, R.H. \& Klopfenstein, K. (2010) AP: A Critical Examination of the Advanced Placement Program, Cambridge, MA: Harvard EducationPress.

Surprise! AP students often take introductory college courses in science
How do they do when "repeating" a course?
4000
3500
3000
2500
2000
1500
1000
500
0

College Science and Math Performance: raw grades

Biology, Chemistry, Physics

Calculus

College Science and Math Performance: + controls

Calculus

Difference in Performance in "102" for Students Who Took AP in High School

Took First Semester_o- Placed out of First Semester

Persistence

- STEM interest shifts in HS
- Engineering > science \& math
- HS volatility higher for females
- HS coursework impacts interest
- Bio: - for years; no impact for AP
- Chem: + for 2 years; none for AP
- Phys: + for years; no impact for AP
- Math: + for calc; no impact for AP
- People orientation
- Low for STEM, high for Med/Health
- Higher for females
- Extrinsic Reward orientation
- Higher for males
- Engineering > science and math

Science reading/watching and OST clubs and competitions
Discuss challenges and benefits of a STEM career

Performance in College

- Prepare for
- science with same science \& math
- calculus with HS calculus
- AP:
- Small impact on STEM courses
- AP Exam: 5 impressive; 1 or 2, not
- College retakers benefit

Pedagogy and Curriculum

Wyss, V. L., Tai, R. H., \& Sadler, P.M. (2007). High school class-size and college performance in science. High School Journal. 90(3), 45-53.
Sadler, P.M. \& Tai, R. H. (2007) The Two High-School Pillars Supporting College Science. Science. 317(5837) 457-458.
Sadler, P.M. \& Tai, R. H. (2007). Advanced Placement exam scores as a predictor of performance in introductory college biology, chemistry, and physics courses. Science Educator, 16(1). 1-19.
Tai, R. H., Sadler, P.M. \& Maltese, A. V. (in press). A study of the association of autonomy and achievement on performance. Science Educator, 16(1), 22-28.
Tai, R. H. \& Sadler, P.M. (2009). Same science for all? Interactive association of structure in learning activities and academic attainment background on college science performance in the USA. International Journal of Science Education. 31(5), 675-696.
Maltese, A. V., Tai, R. H., \& Sadler, P.M. (2010). The Effect of High School Physics Laboratories on Performance in Introductory College Physics, The Physics Teacher, 48(5), 333-337.

The Impact of Coverage:

Depth vs. Breadth

- In teaching my high school science course so that students are well-prepared for college science, I make sure that we cover:
- All the major topics so that students are familiar with most terms and concepts
- A few key topics in great depth so that students have mastered a essential foundational concepts

The Impact of Coverage: Depth vs. Breadth

The Impact of Coverage: Depth vs. Breadth

Laboratory Activities

Sadler, P.M., Coyle, H.A. \& Schwartz, M., (2000)
Successful Engineering Competitions in the Middle School Classroom: Revealing Scientific Principles through Design Challenges, Journal of the Learning Sciences. 9(3), 299-327.
Schwartz, M. S. \& Sadler, P.M. (2007) Empowerment in Science Curriculum Development: A microdevelopmental approach. International Journal of Science Education. 29(18), 987-1017.

What Appears to:

Help:

- Often Draw/Interpret Graphs by Hand
- Often Analyzed Pictures or Illustrations
- Labs Addressed Student's Beliefs
- More prediction, less demo discussion
- Focus on key foundational concepts

What Appears to:

Help:

- Often Draw/Interpret Graphs by Hand
- Often Analyzed Pictures or Illustrations
- Labs Addressed Student's Beliefs
- More prediction, less demo discussion
- Focus on key foundational concepts

Hinder:

- Emphasis on lab procedure
- Read \& Discuss Labs a Day Before
- Doing labs only once
- Testing on labs vs. reports
- Demonstrations with no predictions

Persistence

- STEM interest shifts in HS
- Engineering > science \& math
- HS volatility higher for females
- HS coursework impacts interest
- Bio: - for years; no impact for AP
- Chem: + for 2 years; none for AP
- Phys: + for years; no impact for AP
- Math: + for calc; no impact for AP
- People orientation
- Low for STEM, high for Med/Health
- Higher for females
- Extrinsic Reward orientation
- Higher for males
- Engineering > science and math

Science reading/watching and OST clubs and competitions
Discuss challenges and benefits of a STEM career

Performance in College

- Prepare for
- science with same science \& math
- calculus with HS calculus
- AP:
- Small impact on STEM courses
- AP Exam: 5 impressive; 1 or 2, not
- College retakers benefit
- Coverage
- Less content, more mastery
- Pedagogy
- Pictures, illustrations, graphs
- Simplify lab and demo prediction

Paths to College Calculus

Paths to College Calculus

HS Calculus Teacher Choices

Positive Practices

- Heavy emphasis on functions
- Review homework daily
- Emphasize conceptual understanding
- Emphasize vocabulary

Negative Practices

- Plotting graphs on calculator
- "cheat sheets" for tests
- preparing for tests
- reviewing past lessons
- Teacher manipulates physical objects as teaching aids

How effective are we at teaching foundational concepts?

Clinical Interviews

www.ficss.org

On-on-one with students

Minds of Our Own consists of 3-one hour programs broadcast on PBS in 1997-98. It explores the ideas of students as they come to understand scientific concepts

A Private Universe documents students' ideas through their own drawings and explanations

Professional Development

Institutes
>1000 teachers
Conference Workshops
$>30,000$ teachers
On-line courses
Reaching 85,000
schools

Minds Of Our Own (Photosynthesis)

Both students and teachers have (or had) preconceptions

Exist prior to formal instruction

- At odds with accepted scientific thought, "misconceptions"
- Commonly held, not idiosyncratic
- Embedded in larger knowledge structures, not just a simple "error" (that is easy to correct)
- Resistant to change, over-estimation of Δ
- Best teachers can predict their occurrence

Methods for assessing conceptions

- Interviews
- Lengthy and costly
- Well-trained interviewer
- Open-ended items:
- Students might not explain their thinking
- misconceptions might not be uncovered
- Difficult and time consuming to score
- Multiple-Choice items
- Must know misconceptions beforehand
- Must include misconceptions as distractors
- Other items are too easy

Our Process of Instrument Development

- Targeting content
-Constructing items
- Validating tests
- Samples

Joel Mintzes
Professor of biology and chair of the
Department of Science Education, Cal State Chico

Kimberly Tanner
Assistant Professor; Director of SEPAL, U Cal, San Francisco

Steps in instrument development based on student ideas

- Employ NRC standards
- the root of state standards
- Construct assessment instruments based on misconceptions
- Using research literature
- Validation with both students and teachers
- Pilot and field tests
- Final instruments
- Measure both SMK and PCK

Middle School Life Science Sample Items

MS: Cells

33. Cells inside the human body get energy from:
a. circulating oxygen in the blood.
b. breaking down sugars that come from food.
c. breaking down sugars that they make themselves.
d. giving off carbon dioxide.
e. giving off oxygen.

MS: Cells

33. Cells inside the human body get energy from:
a. circulating oxygen in the blood. 27%
b. breaking down sugars that come from food. 52\%
c. breaking down sugars that they make themselves. 9\%
d. giving off carbon dioxide. 9\%
e. giving off oxygen. 3\%

P (difficulty) $=.52 \quad \mathrm{D}$ (discrimination) $=.42$
MS(misconception strength) $=.57$

MS: Ecosystems

273.2. In a forest, which of the following are consumers, organisms that get food by eating other organisms?
a. Only the trees.
b. Only the squirrels.
c. Only the foxes.
d. Both the trees and the squirrels.
e. Both the squirrels and the foxes.

MS: Ecosystems

273.2. In a forest, which of the following are consumers, organisms that get food by eating other organisms?
a. Only the trees. 3%
b. Only the squirrels. 6%
c. Only the foxes. 55%
d. Both the trees and the squirrels. 5%
e. Both the squirrels and the foxes. 36%

$$
P=.36 \quad D=.41 \quad M S=.78
$$

MS: Extinction

337.1. Which of the following can become extinct?
a. Plants, animals and microorganisms.
b. Plants and animals, but not microorganisms.
c. Only plants.
d. Only animals.
e. Only microorganisms.

MS: Extinction

337.1. Which of the following can become extinct? a. Plants, animals and microorganisms. 52\%
b. Plants and animals, but not microorganisms. 33\%
c. Only plants. 1\%
d. Only animals. 12%
e. Only microorganisms. 2%
$\mathrm{P}=.52 \quad \mathrm{D}=.40 \quad \mathrm{MS}=.69$

Comparisons

- To what degree have students who completed science courses mastered the NRC standards?
- At grade level
- At prior grade levels
- Are there patterns of strength and weakness?

Patterns in Test Data

5-8 MOSART Middle School Life Science Field Test

Teacher Knowledge, MS-LS

Yearly Classroom Gain in Middle School Physical Science

 Courses, $N=15029$ students of 160 teachersConcepts without
Strong Misconceptions

Concepts with
Strong Misconceptions

Item Type and Teacher Knowledge
SMK=Subject Matter Knowledge (knows correct answer) PCK=Pedagogical Content Knowledge (can identify student misconcéptions)

Results of Teacher Professional Development

Gain in SMK and PCK

Δ Subject Matter Knowledge

Δ Pedagogical Content Knowledge

Next Steps: How do gains vary with PD attributes

PD Attributes, difference in emphasis

Lectures or Workshops led by Science Educators Experiencing Active Learning with other teachers Learning previously designed curricula

Developing original curricula
Learning uses of technology in classroom Developing assessment tools for the life sciences Collaborating with colleagues
Understanding of students misconceptions Experiencing Inquiry-Based Learning Techniques Teacher Educators: Master teachers:
Curriculum developers: Conducting/Assisting with Scientific Research Going on field trips Designing student field trips Graduate Students:
Observing and critiquing classroom instruction Assessing student work Lectures or Workshops led by Research Scientists Life science research scientists: Learning the newest scientific thinking on a topic Foundational concepts in the life sciences

4-Factor Solution

Controlling for teacher experience, pre-test score, Grade level

1. Curriculum, not significant

- Lectures or Workshops led by Science Educators
- Learning previously designed curricula, activities (experiments, kits, field trips, etc.)
- Collaborating with colleagues in your domain, grade or geographic area
- Experiencing Active Learning with others
- Experiencing Inquiry-Based Learning Techniques
- Involvement of Teacher Educators
- Involvement of Master teachers
- Involvement of Curriculum developers

2. Creating New Materials, interaction

- Developing original curricula or activities (experiments, kits, field trips, etc.)
- Assessing student work
- Observing and critiquing classroom instruction
- Developing assessment tools for the life sciences
- 3. Lab Research and Field Trips, not significant
- Conducting/Assisting with Scientific Research
- Going on field trips
- Designing student field trips
- Involvement of Life science research scientists
- Involvement of Graduate Students

4. Life Science Content, $+0.38 *$ SD

- Lectures or Workshops led by Research Scientists
- Learning the newest scientific thinking on a topic
- Learning foundational concepts in the life sciences, ecology, etc.
- Learning uses of technology for classroom simulations, data collection or analysis

Which factors make a difference? Curriculum, Creating New Materials, Research, Content

- In SMK
- Content emphasis for all
- Avoid developing new materials with low SMK teachers
- In PCK
- none

Psychological Foundations

"The unlearning of preconceptions might very well prove to be the most determinative single factor in the acquisition and retention of subject-matter knowledge."

David Ausubel 1978

Persistence

- STEM interest shifts in HS
- Engineering > science \& math
- HS volatility higher for females
- HS coursework impacts interest
- Bio: - for years; no impact for AP
- Chem: + for 2 years; none for AP
- Phys: + for years; no impact for AP
- Math: + for calc; no impact for AP
- People orientation
- Low for STEM, high for Med/Health
- Higher for females
- Extrinsic Reward orientation
- Higher for males
- Engineering > science and math

Science reading/watching and OST clubs and competitions
Discuss challenges and benefits of a STEM career

Performance in College

- Prepare for
- science with same science \& math
- calculus with HS calculus
- AP:
- Small impact on STEM courses
- AP Exam: 5 impressive; 1 or 2, not
- College retakers benefit
- Coverage
- Less content, more mastery
- Pedagogy
- Pictures, illustrations, graphs
- Simplify lab and demo prediction
- Students maintain misconceptions
- often unchanged after taking science
- Teacher knowledge
- Subject matter necessary
- Knowledge of misconceptions essential

Teacher Professional Developmeñt

- Content for all, New Materes sfifion SMus
- No impact on PCK

LORD KELVIN (1824-1907)

- "IF YOU CAN MEASURE THAT OF WHICH YOU SPEAK, AND CAN EXPRESS IT BY A NUMBER, YOU KNOW SOMETHING OF YOUR SUBJECT;

LORD KELVIN (1824-1907)

- "IF YOU CAN MEASURE THAT OF WHICH YOU SPEAK, AND CAN EXPRESS IT BY A NUMBER, YOU KNOW SOMETHING OF YOUR SUBJECT;
- BUT IF YOU CANNOT MEASURE IT, YOUR KNOWLEDGE IS MEAGER AND UNSATISFACTORY."

MOSART Website - free assessments www.cfa.harvard.edu/smgphp/mosart

$M C A B$

MISCONCEPTIONS-ORIENTED STANDARDS-BASED ASSESSMENT RESOURCES FOR TEACHERS

My Account
Email*
Password*
Forget your password?
New user? Create log in
Please Note: You must log in to access tests and tutorial

Welcome to MOSART

44"I'm teaching, but they're not learning!"
This is one of the most common laments from educators. Your students may perform well on your assessment instruments, yet say things in class which leave you wondering if they really understand the underlying concepts. Or perhaps you're at the beginning of a unit and are unsure about what your students already know. Which concepts do they already grasp, and which will you have to address? If any of these doubts and questions sound familiar, then the MOSART project was designed to help you.

The acronym MOSART stands for:

- Misconceptions-Oriented: The project recognizes that students do not come to your class as "blank slates" but rather have their own theories.
- Standards-based: The NRC NSES comprise a unifying thread among all MOSART items and tests.
- Assessement Resources for Teachers: The project provides educators with multiple-choice tests that can be used to assess their students' understanding of this content.

Annenberg Channel free videos and PD

FICSS Website - research results

Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the

National Science Foundation, National Institutes of Health, U.S. Department of Education

Acknowledgments

- Project Managers:
- Gerhard Sonnert, Michael Filisky, Hal Coyle
- Survey Staff:
- Cynthia Crockett, Annette Trenga, Bruce Ward, Jaimie Miller, Nancy Cook
- Video Staff:
- Matthew Schneps, Yael Bowman, Toby McElheny, Nancy Finkelstein, Alexia Prichard, Alex Griswold
- Graduate Students/Postdocs:
- John Loehr, Adam Maltese, Kristen Dexter, Charity Watson, Carol Wade
- Advice
- NSF: Janice Earle, Finbarr Sloane, Elizabeth VanderPutten, Larry Suter
- Colleagues
- Zahra Hazari
- Robert Tai
- Joel Mintzes
- Kimberly Tanner
- Marc Schwartz
- Advisors
- Brian Alters, Lillian McDermott
- Eric Mazur, James Wandersee
- Dudley Herschbach

Financial Support

- SI, NSF, DoEd
- Annenberg/CPB, Nubt
- psadler@cfa.harvard.edu

