Supporting Teacher Learning in New Ways

STEM Smart Conference • San Francisco February 1, 2016 Leema Berland University of Wisconsin-Madison Suzanna Loper Lawrence Hall of Science, University of California-Berkeley

STEM Smart workshops are funded by the National Science Foundation grant #1449550. The work presented in this session was funded by National Science Foundation grant DRL-1119584 and DRL-1316232. Any opinions, findings, and conclusions or recommendations at this event or in these materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Today's Goal

Identify different areas in which teachers might need support when adopting and adapting the practice of scientific argumentation.

Scientific Argumentation

 One of the Next Generation Science Standards Practices of Science and Engineering

> Science and Engineering **Practices**



Disciplinary Core Ideas

Scientific Argumentation

- One of the Next Generation Science Standards Practices of Science and Engineering
 - 1. Asking questions
 - 2. Developing and using models
 - 3. Planning and carrying out investigations
 - 4. Analyzing and interpreting data
 - 5. Using mathematics and computational thinking
 - 6. Constructing explanations
 - 7. Engaging in argument from evidence
 - 8. Obtaining, evaluating, and communicating information

Argumentation Elements

Classroom Example: Science Seminar

A student-driven evidence-based discussion focused on a science question

Inner semicircle talks

- Half the class sits in the inner semicircle.
- The other half of the class sits in the outer semicircle.
- Then, students switch semicircles.

Outer semicircle listens -----

© 2013 Regents of the University of California

Classroom Example: Science Seminar

How will the Indian Plate be different in 50 million years?

Two different enactments: Ms. Richardson

Ms. Richardson: ok. Marcus.

Marcus: Um, I disagree with Ian and Jose. I see what they are saying. Um. Ian's theory it is still going to the Eurasian plate, because that entire area is still the Eurasian plate.

Tony: But it's also colliding with the – what plate is that?

Several students go over to point to map Tony is holding.

Ms. Richardson: So you're talking about the countries of South Asia and Indonesia. You're saying that forms a different plate?

Tony: Yeah. And it is also colliding with the Indian plate.

Ian: Well, I (inaudible) cause – yes it is going to collide, but right here there's many – there's lots of spreading zone. It is going to get lots of crust – lots of new crust to make the plate bigger

Eduardo: It is also a subduction zone.

Ian: Yeah, but look – the subduction zone has like $\frac{1}{4}$ of the subduction zone and like 1, 2, 3, 4, 5, 6, 7, 8 – eight spreading zone Eduardo: But it is really small.

Ian: Yeah but they have 8 that's ¹/₄.

Ms. Richardson: İs there anybody else who would like to join in the conversation with agreeing or disagreeing with um - the ideas that have been presented, or providing more evidence or new evidence? Bill?

What's successful?

- Students talking to each other instead of the teacher
- Referring to evidence
- Genuine disagreement
- Referencing other students' ideas

Two different enactments: Ms. Brennan

Ms. Brennan: Elena why don't you come on up. Ok. And you guys be attentive. Guys this is a little bit different than a presentation where someone – this is, this is um a give and take where you are going to be um listening. The inner circle as well is going to be able to – um as they come up – when they come up they will give their evidence for their part, but we can't clap between speakers. Your engaged and listening. It is like as if you were a grown-up and you were going to a workshop. That is exactly what it is like. Ok. Elena.

Elena: Well, I thought that the um Indian plate would get bigger over 50 million year period because of spreading zones which could easily spread the plates apart and make them wider.

Ms. Brennan: Ok. Alright. (Elena sits down). Ok. I am going to need um – why don't you go ahead. Once this starts, why don't you come on up. Jordan why don't you come next. (Jordan stands up). And I am just going to move this right over here so you guys can go in and out (Teacher moves iPad). Ok.

Jordán: I thought that um that the Himalayans would get taller, because when the plates like started crashing into each other – this one is going in this direction (Jordan points to the map) and it should make it bigger. Ms. Brennan: Ok. (Jordan sits down). Thank you very much. Another person. Come on up.

McNeill, Gonzalez-Howard, Katsh-Singer, Price & Loper, 2013

What's successful?

• Students are making claims and supporting them with evidence

What's less successful?

- "IRE" structure: teacher-student-teacher
- No student interaction
- There may be disagreement, but can't tell; no referencing of other students' ideas

Ms. Richardson

Ms. Richardson: ok. Marcus. Marcus: Um, I disagree with Ian and Jose. I see what they are saying. Um. Ian's theory it is still going to the Eurasian plate, because that entire area is still the Eurasian plate. Tony: But it's also colliding with the – what plate is that?

Several students go over to point to map Tony is holding.

Ms. Richardson: So you're talking about the countries of South Asia and Indonesia. You're saying that forms a different plate?

Tony: Yeah. And it is also colliding with the Indian plate.

Ian: Well, I (inaudible) cause – yes it is going to collide, but right here there's many – there's lots of spreading zone. It is going to get lots of crust – lots of new crust to make the plate bigger

Eduardo: It is also a subduction zone.

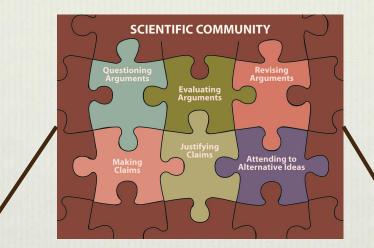
Ian: Yeah, but look – the subduction zone has like ¼ of the subduction zone and like 1, 2, 3, 4, 5, 6, 7, 8 – eight spreading zone Eduardo: But it is really small.

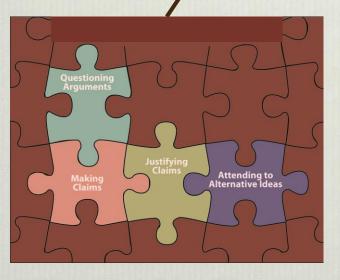
Ian: Yeah but they have 8 that's ¼. Ms. Richardson: Is there anybody else who would like to join in the conversation with agreeing or disagreeing with um - the ideas that have been presented, or providing more evidence or new evidence? Bill?

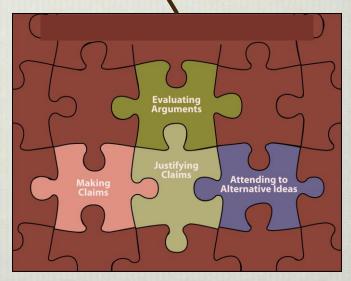
Ms. Brennan

Ms. Brennan: Elena why don't you come on up. Ok. And you guys be attentive. Guys this is a little bit different than a presentation where someone – this is, this is um a give and take where you are going to be um listening. The inner circle as well is going to be able to - um as they come up – when they come up they will give their evidence for their part, but we can't clap between speakers. Your engaged and listening. It is like as if you were a grown-up and you were going to a workshop. That is exactly what it is like. Ok. Elena. Elena: Well, I thought that the um Indian plate would get bigger over 50 million year period because of spreading zones which could easily spread the plates apart and make them wider. Ms. Brennan: Ok. Alright. (Elena sits down). Ok. I am going to need um – why don't you go ahead. Once this starts, why don't you come on up. Jordan why don't you come next. (Jordan stands up). And I am just going to move this right over here so you guys can go in and out (Teacher moves iPad). Ok. Jordan: I thought that um that the Himalayans would get taller, because when the plates like started crashing into each other - this one is going in this direction (Jordan points to the map) and it should make it bigger. Ms. Brennan: Ok. (Jordan sits down). Thank you very much. Another person. Come on up.

Why pseudoargumentation?


Practice of Scientific Argumentation




Scientific Argumentation in Classrooms

Composite Argumentation Practice

(e.g. Berland, 2011; Berland & Hammer, 2012; Hogan & Corey, 2001; Engle et al, 2002.; Lave & Wenger, 1991)

How can we affect the ways that classroom communities frame scientific argumentation?

Factors that Influence Framing

Typical classroom goals, norms, and ways of interacting

Goals, norms, and ways of interacting of scientific argumentation

Moment-by-moment interactions

Composite Argumentatio n Practice

Factors that Influence Framing

Typical classroom goals, norms, and ways of interacting

Goals, norms, and ways of interacting of scientific argumentation

Moment-by-moment interactions

Composite Argumentatio n Practice

- Research and development project funded by NSF grant DRL-1119584
- Collaboration between the Lawrence Hall of Science and Kate McNeill at Boston College

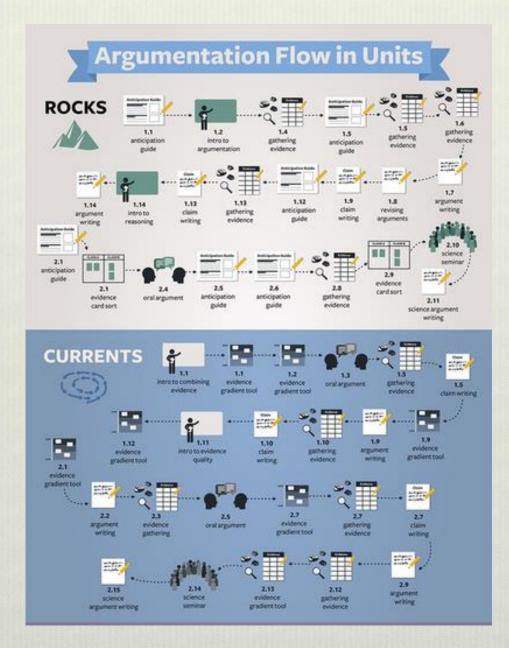
 Teachers need support for learning to teach argumentation.

Simon, Erduran & Osborne, 2006; McNeill, 2009; McNeill, Pimentel & Strauss, in press

 Teachers need practical, scalable support for learning to teach argumentation.

Simon, Erduran & Osborne, 2006; McNeill, 2009; McNeill, Pimentel & Strauss, in press

Educative curriculum materials


Davis & Krajcik, 2005; Davis, et. al, 2014

Teachers need practical, scalable support for learning to teach argumentation, a rich and complex practice difficult to convey in text.

Simon, Erduran & Osborne, 2006; McNeill, 2009; McNeill, Pimentel & Strauss, in press

Davis & Krajcik, 2005; Davis, et. al, 2014

Eultanodia aducatine aurriefulum materials (MECMs)

MECM Curricular Elements

Embedded within 3 middle school earth science units (~60 lessons) educative supports targeting scientific argumentation:

- 28 Videos
- ***** 24 Interactive Reflections
- ✤ 3 Podc
- ✤ 4 Slide 1. Target challenge areas
- 21 Tex
 2. Use multimedia representations of practice
- ✤ 4 Grap
- Stud 3. Support active learning
- ✤ 1 Rubr
- ✤ 1 Argumentation article

Video Categories Embedded in Lessons

Research Design

RCT 2014-15 (n=90)

- All teachers received a digital teacher's guide and all student materials
- Treatment teachers received additional MECMs (videos, interactive elements)
- No requirements: use materials as you would normally use them.
- Data collection:
 - Pre- and post-assessment of PCK for argumentation and beliefs about argumentation
 - Back-end data collection on teachers' use of digital curriculum and access of videos.

Argumentation Toolkit

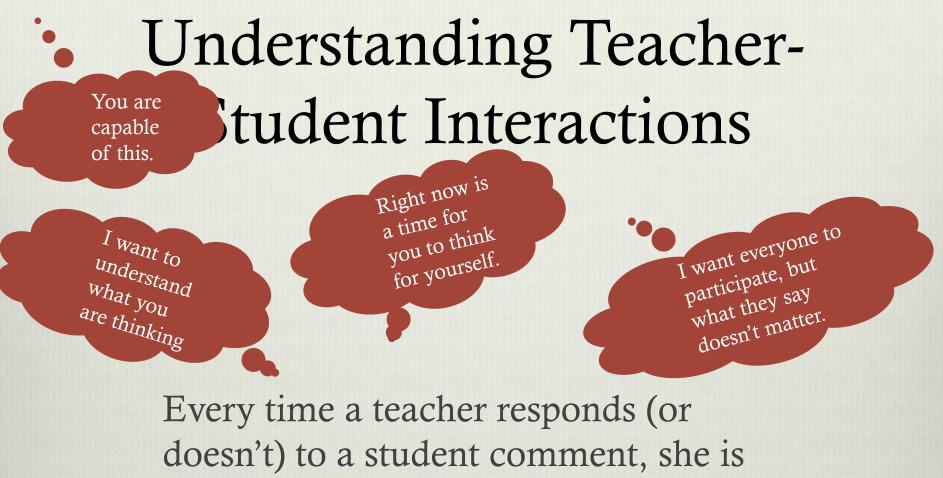
argumentationtoolkit.org

The Argumentation Toolkit

Factors that Influence Framing

Typical classroom goals, norms, and ways of interacting

Goals, norms, and ways of interacting of scientific argumentation


Moment-by-moment interactions

Participant framings Composite Argumentatio n Practice

Fostering Pedagogical Argumentation (teachers arguing about teaching)

- Research and development project funded by NSF grant DRL-1316232
- PIs: Leema Berland, Melissa Braaten, and Rosemary Russ, University of Wisconsin-Madison

sending a message.

The important thing is that you look engaged.

(Russ, under review)

Marcus: Um, I disagree with Ian and Jose. I see what they are saying. Um. Ian's theory it is still going to the Eurasian plate, because that entire area is still the Eurasian plate.

Tony: But it's also colliding with the – what plate is that?

Several students go over to point to map Tony is holding.

Ms. Richardson: So you're talking about the countries of South Asia and Indonesia. You're saying that forms a different plate?

Tony: Yeah. And it is also colliding with the Indian plate.

Elena: Well, I thought that the um Indian plate would get bigger over 50 million year period because of spreading zones which could easily spread the plates apart and make them wider.

Ms. Brennan: Ok. Alright. (Elena sits down). Ok. I am going to need um – why don't you go ahead. Once this starts, why don't you come on up. Jordan why don't you come next. (Jordan stands up). And I am just going to move this right over here so you guys can go in and out (Teacher moves iPad). Ok.

Jordan: I thought that um that the Himalayans would get taller, because when the plates like started crashing into each other – this one is going in this direction (Jordan points to the map) and it should make it bigger.

Understanding Teacher-You are Student Interactions capable of this. Right now is a time for I want everyone to you to think I want to for yourself. participate, but understand what you what they say are thinking doesn't matter.

Teachers need to consider these messages: Are they sending messages that are consistent with their goals?

The important thing is that you look engaged.

I like that you are connecting to our evidence

(Russ, under review)

You need to

information

Factors that Influence Framing

Typical classroom goals, norms, and ways of interacting

Goals, norms, and ways of interacting of scientific argumentation

Moment-by-moment interactions

Composite Scientific Practice

Thank you

Suzy Loper • Lawrence Hall of Science • sjloper@berkeley.edu

Leema Berland • University of WI-Madison • lberland@wisc.edu

STEM Smart workshops are funded by the National Science Foundation grant #1449550. The work presented in this session was funded by National Science Foundation grant DRL-1119584 and DRL-1316232. Any opinions, findings, and conclusions or recommendations at this event or in these materials are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.